Ultrafast branching in the excited state of coumarin and umbelliferone.

نویسندگان

  • Caroline M Krauter
  • Jens Möhring
  • Tiago Buckup
  • Markus Pernpointner
  • Marcus Motzkus
چکیده

In the present work we have explored the ultrafast relaxation network of coumarin and umbelliferone (7-hydroxy-coumarin) using time-resolved femtosecond spectroscopy and quantum chemical calculations. Despite the importance of the photophysical properties of coumarin derivatives for applications in biomedicine, the low fluorescence quantum yield of coumarin itself has not been fully understood so far. On the basis of our combined experimental and theoretical results we suggest a model for the ultrafast decay after photoexcitation incorporating two parallel radiationless relaxation pathways: one within the initially excited state via ring opening and the other one by transition into a dark state along the carbonyl stretching mode. The fluorescence quantum yield is determined by the position of the branching point relative to the Franck-Condon region which is strongly influenced by interactions with the environment and the substitution pattern. This model is finally capable of giving a comprehensive account of the striking differences observed in the photophysical behavior of coumarin as opposed to umbelliferone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafast Luminescence Decay in Rhenium(I) Complexes with Imidazo[4,5-f]-1,10-Phenanthroline Ligands: TDDFT Method

The interpretation of the ultrafast luminescence decay in [Re(Br(CO)3(N^N)] complexes as a new group of chromophoric imidazo[4,5-f]-1,10-phenanthroline ligands, including 1,2-dimethoxy benzene, tert-butyl benzene (L4) and 1,2,3-trimethoxy benzene, tert-butyl benzene (L6), was studied. Fac-[Re(Br(CO)3L4 and L6] with different aryl groups were calculated in singlet and triplet excited states. The...

متن کامل

Ultrafast excited-state electron transfer at an organic liquid/aqueous interface.

Ultrafast excited-state electron transfer has been monitored at the liquid/liquid interface for the first time. Second harmonic generation (SHG) pump/probe measurements monitored the electron transfer (ET) occurring between photoexcited coumarin 314 (C314) acceptor and dimethylaniline (DMA) donor molecules. In the treatment of this problem, translational diffusion of solute molecules can be neg...

متن کامل

Role of solvation dynamics in excited state proton transfer of 1-naphthol in nanoscopic water clusters formed in a hydrophobic solvent.

Excited state proton transfer (ESPT) in biologically relevant organic molecules in aqueous environments following photoexcitation is very crucial as the reorganization of polar solvents (solvation) in the locally excited (LE) state of the organic molecule plays an important role in the overall rate of the ESPT process. A clear evolution of the two photoinduced dynamics in a model ESPT probe 1-n...

متن کامل

Theoretical Investigation of the Ground and Excited States of Coumarin 151 and Coumarin 120

We present calculations of various properties of the ground and excited states of Coumarins 151 and 120. These and related coumarins are important in investigating ultrafast solvation processes in liquids and complex solutions as well as being important acceptors in model electron-transfer systems. We calculate the following: (1) the electronic excitation energies to several low-lying singlet s...

متن کامل

Early time hydrogen-bonding dynamics of photoexcited coumarin 102 in hydrogen-donating solvents: theoretical study.

To study the early time hydrogen-bonding dynamics of chromophore in hydrogen-donating solvents upon photoexcitation, the infrared spectra of the hydrogen-bonded solute-solvent complexes in electronically excited states have been calculated using the time-dependent density functional theory (TDDFT) method. The hydrogen-bonding dynamics in electronically excited states can be widely monitored by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 41  شماره 

صفحات  -

تاریخ انتشار 2013